
My tools for Gophers
May 2016, Barcelona
@idanyliuk

https://twitter.com/idanyliuk

Tools for Gophers

Expvarmon
zero-configuration monitoring for Go expvars

github.com/divan/expvarmon

https://github.com/divan/expvarmon

Expvarmon
Expvar + monitoring

Expvar

• Stdlib package

• Easy to use

• Exposes /debug/vars endpoint

Easy to use

import _ "expvar"

Easy to use
import _ “expvar”

func goroutines() interface{} {
 return runtime.NumGoroutine()
}

expvar.Publish("Goroutines", expvar.Func(goroutines))

Expvarmon

• Zero configuration

• Polls /debug/vars endpoint

• Renders output as a charts in a console

Expvarmon

• No storage

• No search

• No notifications

DEMO

Configuration
• Almost zero configuration, cmdline only

• Ports/URLs to monitor (-ports)

• JSON fields to monitor (-vars)

• Interval (-i)

Configuration - Ports
• 8080

• 8080-8082

• localhost:1234-1235,http//remote.app:1234

• http://user:auth@remote:1234-1238

Configuration - Vars
• Nested JSON fields are comma separated

• -vars = “memstat.Alloc,memstat.PauseNS”

• -vars = “Goroutines,mycounter”

• -vars = “mem:memstat.HeapInuse,duration:memstat.PauseNS”

Configuration - Modifiers

• mem: - treats as memory (renders as KB, MB, GB, etc.)

• duration: - treats as time duration (renders as µs, ms, s, etc)

• string: - treats as string and don’t display chart

Use cases

• debug session (see goroutines, mem, etc)

• quick look into running services

Security

• Don’t expose ‘/debug/vars’ to internet

• Use different http.Server or framework, if needed

• Consider sane -i option to not overload the service

DepsCheck
LeftPad eliminator

github.com/divan/depscheck

https://github.com/divan/depscheck

LeftPad and Go

• Blog post - LeftPad and Go: can tooling help?

• Inspired by LeftPad fiasco story in JS community.

• Helps to find small dependencies

https://divan.github.io/posts/leftpad_and_go/

Dependencies
• Pros: eliminate complexity (short-term)

• Cons: add complexity (long-term)

• DRY principle is about abstractions, not about code

• Key is to manage and control complexity of the project

DepsCheck
• Why wait for the experience to come?

• Let’s allow tools to help us.

• DepsCheck analyzes AST of you program and it’s deps

• And shows candidates for ‘small dependencies’

DEMO

GoBenchUI
UI for benchmarks over time

github.com/divan/gobenchui

https://github.com/divan/gobenchui

GoBenchUI

• UI for overview your package benchmarks progress

• Run benchmarks against every commit

• Display results using HighCharts.js graph

DEMO

GoFresh
Keep dependencies fresh
github.com/divan/gofresh

https://github.com/divan/gofresh

GoFresh
• Checks your package imports for new updates

• Displays them to console

• Shows commits (aka Changelog)

• Easy wrapper for updating deps

Workflow
• cd src/github.com/user/project/

• $ gofresh

• $ gofresh -expand github.com/howeyc/fsnotify

• $ gofresh -update

• $ go test

DEMO

Note

• Works only with deps in GOPATH or those ones that
have VCS metadata kept

Thank you!

