
Why every gopher should be a
data scientist.

Ivan Danyliuk, Golang BCN June Meetup
27 June 2017, Barcelona

The recent study from MIT has
found...

https://www.sudosatirical.com/articles/theres-eighty-seven-percent-chance-linus-torvalds-hates-your-code/

...there's an 87% chance
Linus Torvalds hates your code.

"Bad programmers worry about the
code. Good programmers worry about
data structures and their relationships."

"Show me your [code] and conceal your [data
structures], and I shall continue to be mystified.

Show me your [data structures], and I won't
usually need your [code]; it'll be obvious."

Fred Brooks

Question

• Raise your hand if you have designed your own
non-standard data-structure recently?

• Raise your hand if you have implemented your
own custom algorithm recently?

Question

• Now, raise your hand if you have written a new
microservice recently?

Our "programs" now are
distributed systems.

Our "hardware" is a cloud.

Algorithms -> Programs ->
Distributed systems

CSP
• Hardware chips CSP

implementations

• Software CSP frameworks/
languages

• Distributed systems

• Inlining function vs external function call

• Local code vs external RPC call to service

• Imagine, network call is as cheap as local
function call - what's the difference then?

Calls

Algorithmia is actually already
doing that

http://www.apple.com

package main

import (
 "fmt"
 algorithmia "github.com/algorithmiaio/algorithmia-go"
)

func main() {
 input := 1429593869

 var client = algorithmia.NewClient("YOUR_API_KEY", "")
 algo, _ := client.Algo("algo://ovi_mihai/TimestampToDate/0.1.0")
 resp, _ := algo.Pipe(input)
 response := resp.(*algorithmia.AlgoResponse)
 fmt.Println(response.Result)
}

1. Think about the whole
system as one program

systems

algorithms
design around the dataprograms

Examples

How Twitter refactored it's
media storage system

Twitter story

Twitter in 2012

Backend: API, storage,
resize, prepare thumbs, etc

Twitter in 2012

Backend: API, storage,
resize, prepare thumbs, etc

• Handle user upload
• Create thumbnails and

different size versions
• Store images (write)
• Return on user request

(read)

View
image

Upload
image

Store

Resize

Twitter in 2012

Backend: API, storage,
resize, prepare thumbs, etc

• Handle user upload
• Create thumbnails and

different size versions
• Store images
• Return on user request (view)

View
image

Upload
image

Store

Resize

The Problem:
• a lot of storage space
• + 6TB per day

Twitter did a research on the data
and found patterns of access

After the data research

• 50% of requested images are at most 15 days
old

• After 20 days, probability of image being
accessed is really low

Twitter in 2016
• Introduced a CDN Origin Server called MinaBird,

which can do resizes on-the-fly

• Slow, but it's a good space-time tradeoff.

• Image variants kept only 20 days.

• Images older than 20 days were resized by
MinaBird on the fly.

Twitter in 2016

• Storage usage dropped by 4TB per day
• Twice as less of computing power
• Saved $6 million in 2015
• Just by looking at data and usage patterns

How to ignore data

One of my former employers story

The problem

• Similar to twitter, they had users writing and
reading stuff

• Stuff had to be filtered and searched

• It became slow as the company size grew

Design
• All data was stored in single

MySQL instance

• Hundreds of millions of records

• Go backend - simply a proxy to
DB

• DB became a bottleneck

Backend

MySQL
MySQL is more than 4.5 million Lines of Code

Then we made a thorough data
research...

and found two things:
• most (90%) of the data

was really small

• basically, 95p is 10x10
table of strings

• searching that >1s
didn't make any sense

Property of the small numbers
• Linear search can outperform binary search if N

is small

• Cumulative costs of indexing, storing, making
network request, doing complex search,
returning the answers are higher than naive for
loop in memory if N < 10

Property of the small numbers

• On top of that, data research found very strong
usage access pattern similar to twitter's one

• Most of the data was a "dead weight" after two
weeks

• And there was a good evidence that it's not
going to change

Data retention

Solution
• Than opens up possibility to a lot of unique trade-offs

• Use slower & cheaper storage for the old data

• Pre-load new data and perform search/filtering in
the memory

• Scales nicely - just add more servers + consistent
hash load-balancing (each user had unique ID)

But, company decided to solve DB problem...

...by switching to another DB.

Outcome
Backend

maintenance

complexity

security issues

bugsscaling

devops 2mln LOC

JAVA

docs

support

maintenance

complexity

security issues

bugsscaling

devops 4.5mln LOC

C++

docs

support

Backend

ElasticSearch
ElasticSearch is around 2 million Lines of Code

When you're ignoring data it's not a software
engineering anymore.

It's DevOps (with all respect).

How Ravelin designed fraud
detection system

Ravelin story

Graphing in Go
Must watch talk:

https://skillsmatter.com/skillscasts/8355-london-go-usergroup

https://skillsmatter.com/skillscasts/8355-london-go-usergroup
https://skillsmatter.com/skillscasts/8355-london-go-usergroup

Ravelin

• Ravelin does fraud detection for financial sector

• For the machine learning they need data

• Data is a different features

Ravelin

• Clients make an API call to check if they allow
order to proceed

• So the latency is critical here.

Ravelin
• But there are complex features

• They needed to connect things
like phone numbers, credit
cards, emails, devices and
vouchers

• So new people could be easily
connected to known
"fraudsters" with very little data.

Ravelin

• They studied the
problem offline

• It was clear they
need a graph
database

Ravelin
So, they looked at major players in Graph databases
world...

So they returned to the whiteboard
and asked the question:

 "What data do we actually need?"

Ravelin

• "What we care about is the number of people
that are connected to you."

• "And if any of those people are known
fraudsters."

Ravelin
• So they come up with the solution by using

Union Find (disjoint-set) data structure

• This data structure basically allows you to:

• find things (and subsets they are in)

• join subsets

Union Find

1 2 3 4 5We have 5 people:

Union Find

1 2 3 4 5We have 5 people:

1 and 2 are friends

Union Find

1

2

3 4 5We have 5 people:

1 and 2 are friends

Union Find

1

2

3 4 5We have 5 people:

1 and 2 are friends

4 and 5 are friends

Union Find

1

2

3 4

5

We have 5 people:

1 and 2 are friends

4 and 5 are friends

Union Find

1

2

3 4

5

We have 5 people:

1 and 2 are friends

4 and 5 are friends

3 and 5 are friends

Union Find

1

2

3 4

5

We have 5 people:

1 and 2 are friends

4 and 5 are friends

3 and 5 are friends

Union Find

1

2

4We have 5 people:

1 and 2 are friends

4 and 5 are friends

3 and 5 are friends

53

Union Find

1

2

4We have 5 people:

1 and 2 are friends

4 and 5 are friends

3 and 5 are friends

53

FindSet - does 3 belongs to the same set as 2?
MergeSet - 3 and 2 are friends, so let's join set

Union Find

1

2 4

We have 5 people:

1 and 2 are friends

4 and 5 are friends

3 and 5 are friends 53

FindSet - does 3 belongs to the same set as 2?
MergeSet - 3 and 2 are friends, so let's join set

Union Find

1

2 4

We have 5 people:

1 and 2 are friends

4 and 5 are friends

3 and 5 are friends 53

FindSet - does 3 belongs to the same set as 2?
MergeSet - 3 and 2 are friends, so let's join set
FindSet(3)

Union Find

1

2 4

We have 5 people:

1 and 2 are friends

4 and 5 are friends

3 and 5 are friends 5

3

FindSet - does 3 belongs to the same set as 2?
MergeSet - 3 and 2 are friends, so let's join set
FindSet(3)

Union Find
• It's really fast and has small memory footprint:

• CreateSet - O(1)

• FindSet - O(α(n))* (worst case)

• MergeSet - O(α(n))* (worst case)

• Visualization: https://visualgo.net/en/ufds
* α(n) - is an inverse Ackerman function, grows slower than log(n)

https://visualgo.net/en/ufds

Ravelin

type Node struct {
 Count int32
 Parent string
}

type UnionFind struct {
 Nodes map[string]*Node
}

Simplified version of code used:

Ravelin

// ...

 for node.Parent != id {

 // `node` is not the parent as parents always point to themselves
 // Set our ID to that of the parent of `node` (move up the graph)
 id = node.Parent

 // Get the new parent after moving up the graph
 newParent := uf.indexNode(id)

 // Push `node` up the graph by pointing it at the parents parent (skip the middle man)
 node.Parent = newParent.Parent

 // Set that parent as `node` and loop.
 // We keep doing this until we are at the top of the graph
 node = newParent
 }

 return node
}

Simplified version of code used:

Ravelin

// Add adds a connection between two items to the map
func (uf *UnionFind) Add(a, b string) int32 {
 // Find the parent nodes of these two items. If the node is new, this mints a new node.
 firstNode, secondNode := uf.getParentNodeOrNew(a), uf.getParentNodeOrNew(b)

 // Join the two nodes together
 var parent *Node
 if firstNode.Parent == secondNode.Parent {
 // The parents are the same so we are done
 return firstNode.Count
 } else if firstNode.Count > secondNode.Count {
 // We pick a parent by chosing the node with the highest count
 parent = uf.setParent(firstNode, secondNode)
 } else {
 // secondNode is the parent
 parent = uf.setParent(secondNode, firstNode)
 }

 return parent.Count
}

Simplified version of code used:

Ravelin
95th is under 2ms, average is closer to 1ms

Ravelin

• Store the data in memory

• Persist in BoltDB

• Shard per client for scaling.

Ravelin
Neo4J is more than 1 million Lines of Code

Ravelin

Backend
Backend

UnionFind/
BoltDB

vs
maintenance

complexity

security issues

bugsscaling

devops 1mln LOC

JAVA

docs

support

• Less code by order of
magnitude

• Less bugs
• Less maintenance
• More simple
• Code fully owned by team

Backend
UnionFind/

BoltDB

Backend
UnionFind/

BoltDB

Systems designed around the data
are much simpler, than you think.

2. Always ask questions about
data you work with

US AirForce and averages

• In late 1940s, the USAF had a serious problem:
the pilots could not keep control of their planes

• Planes were crashing even in the non-war period

• Sometimes up to 17 crashes per day

• Blaming pilots and training program didn't help

• Investigations confirmed that planes were ok as
well

• But people were keep dying

• Finally, they turned the attention to the design of
the cabin

• It was designed in late 20s for the average pilot

• Data was taken from the massive study of
soldiers during the Civil War

• USAF conducted new study of 4000+ pilots

• Measured 140 different body parameters

• And checked how many pilots fit to average by
10 parameters, relevant to the cabin design

Zero

• Only by 3 dimensions, only 3.5% of the pilots
were "average sized"

• There was no such thing as an "average pilot"

• So, USAF ordered to make cabins adjustable, to
fit wide range of different pilots.

• Unexplained plane mishaps had reduced
drastically

But why?

Average in high-dimension spaces
• Our intuition is built mostly on 1 dimension

• We tend to think that average is "where the most of
values are"

• But it's only the particular case of:

• 1 dimensional data

• Normal or similar distribution

Average in high-dimension spaces

• Average is actually more like "center of the
mass"

• Average value of the donut is inside the hole

• But for high dimensions everything is really
messed up

1D Normal Distribution

2 dimensions

3 dimensions

• As number of dimensions grows, mass moves
from center to the perifery

• In 10 dimensions, almost all values are on the
edges*

• As some professors say "The N-dimensonal
orange is all skin"

• But our intuition is built upon 1-2-3 dimensions

• For many types of data, intuition is not enough,
we need math

Requests rate probability
function

Requests distribution

• We do a lot of servers in Go

• And we test them using load testing tools ('ab',
'vegeta', 'boom', own tools, etc)

Requests distribution
• Most tools are sending requests in parallel with

constant intervals

• But that's not how requests arrive in reality

• Typical distribution of independent events is a
Poisson distribution

Requests distribution
Constant interval

Requests distribution
Constant interval

Uniform distribution

Requests distribution
Constant interval

Poisson distribution

Uniform distribution

Let's see how it may make a
difference.

package main

import "net/http"
import "time"

var locked bool
func handler(w http.ResponseWriter, r *http.Request) {

if locked {
w.WriteHeader(http.StatusInternalServerError)
return

}

locked = true
go time.AfterFunc(time.Millisecond, func() { locked = false })

}

func main() {
http.HandleFunc("/", handler)
http.ListenAndServe(":5000", nil)

}

server.go

type delayFunc func() float32

func constant() float32 {
return 1

}

func uniform() float32 {
return rand.Float32()

}

func poisson() float32 {
return float32(r.Poisson(1))

}

package main

import (
"fmt"
"io"
"io/ioutil"
"log"
"net/http"

)

var delay = 100 * time.Millisecond
var N = 100
var r *rng.PoissonGenerator

func main() {
Loop("Constant", constant)
Loop("Uniform", uniform)
Loop("Poisson", poisson)

}

client.go

func makeRequest() {
 url := "http://localhost:5000/"

resp, err := http.Get(url)
if err != nil {

log.Fatal(err)
}
io.Copy(ioutil.Discard, resp.Body)
resp.Body.Close()
if resp.StatusCode == http.StatusOK {

fmt.Printf(".")
} else {

fmt.Printf("🔥")
}

}

func init() {
 seed := time.Now().UnixNano()
 rand.Seed(seed)
 r = rng.NewPoissonGenerator(seed)
 go func() {
 for {
 fmt.Printf(" ")
 time.Sleep(delay)
 }
 }()
}
func Loop(name string, fn delayFunc) {

fmt.Println(name)
for i := 0; i < N; i++ {

v := fn() * float32(delay)
time.Sleep(time.Duration(v))
makeRequest()

}
fmt.Println()

}

client.go

• "Essential complexity" vs "accidental
complexity" (F. Brooks, "No Silver Bullet")

• In Go we're lucky to have accidental complexity
level pretty low

• We have more time to solve actual problems
(essential complexity)

• And you need understand the data first

• Before you start writing the code

3. To make sense of the data,
learn data science

Data Science

• It's a interdisciplinary field

• Math, statistics, computer science, visualization,
machine learning, etc

If you want to be a good software
engineer, you should be a

passionate about data science.

1. Think about the whole system as one program

2. Always ask questions about data you work with

3. To make sense of this data, learn data science

Links
• http://highscalability.com/blog/2016/4/20/how-twitter-handles-3000-images-per-

second.html

• https://skillsmatter.com/skillscasts/8355-london-go-usergroup

• https://www.thestar.com/news/insight/2016/01/16/when-us-air-force-discovered-
the-flaw-of-averages.html

• https://medium.com/@charlie.b.ohara/breaking-down-big-o-notation-40963a0f4e2a

• https://www.youtube.com/watch?v=gas2v1emubU

• https://algorithmia.com/algorithms/ovi_mihai/TimestampToDate

• https://en.wikipedia.org/wiki/Disjoint-set_data_structure

http://highscalability.com/blog/2016/4/20/how-twitter-handles-3000-images-per-second.html
http://highscalability.com/blog/2016/4/20/how-twitter-handles-3000-images-per-second.html
https://skillsmatter.com/skillscasts/8355-london-go-usergroup
https://www.youtube.com/watch?v=gas2v1emubU
https://algorithmia.com/algorithms/ovi_mihai/TimestampToDate
https://en.wikipedia.org/wiki/Disjoint-set_data_structure

Thank you.

