
Go 1.9
Coolest Go release ever*

@idanyliuk
BCN Golang, Sep 28, 2017

*every Go release is coolest ever by definition

• As usual, most of the programs
should be a bit faster

• Speedups in different libs

• GC optimizations

• Better generated code

Performance

Parallel compilation

• Go has always compiled files in parallel

• In Go1.9 functions also can be processes/
compiled in parallel

• Can be disabled by:

export GO19CONCURRENTCOMPILATION=0

Parallel compilation
• Benefit depends on the width and hight of your packages

• For "many packages/not so many functions" gain is small

• For refactoring large codebases

• T1 denotes the same type as T2

• Don't use it for anything else

Type Aliases

type OldAPI = NewPackage.API

./... ignores vendor/ 🤘

• No more:

• Just run:

• If you need to also test vendor/:

go test $(go list ./... | grep -v vendor)

go test ./...

go test ./vendor/...

Monotonic time support

• Each OS has two clocks - "wall" and
"monotonic"

• Wall clock - for telling time

• Monotonic clock - for measuring time

• If time changes (sync, "leap second"),
time.Duration() before Go 1.9 could
return wrong measurement

Monotonic time support

• CloudFlare wrote a blog post of how
this absence of monotonic clock
support in Go causes serious outage.

• Rationale of using monotonic clocks
are well described in the GoDoc for
time package in Go 1.9

• What is cool: there is no change in API

• Go will use right clock for the right task

https://blog.cloudflare.com/how-and-why-the-leap-second-affected-cloudflare-dns/

Monotonic time support

Go 1.8
2017-09-24 20:05:54.356882078 +0200 CEST
Go 1.9
2017-09-24 20:05:38.755165304 +0200 CEST m=+0.000259428

now := time.Now()
now.String()

Don't use Time.String() for comparison:

now.Format()
Use instead:

• Concurrent map that solves specific
case of cache contention:

• high-performance (ns makes a diff)

• stable keys

• many CPU cores (16 and more)

• In other cases, map+RWLock mutex is
generally better

sync.Map

Cache Contention

• You use encoding/json...

• ...encoding/json uses reflect

• ...reflect uses sync.RWMutex

• ...RWMutex uses atomic.AddInt32 to update readers counter

• ...each reader needs to invalidate L2 cache and transfer value from
other core cache

• L2 cache transfer is around 40ns on modern CPU

• O(1) task becomes O(N) by number of cores = cache contention

sync.Map

sync.Map

Benchmark from original issue on RWMutex's cache contention:

sync.Map

mailto:https://github.com/golang/go/issues/17973

sync.Map

m := make(map[string]int64)

m["key"] = 42

val, ok := m["key"]

delete(m, "key")

sync.Map
var m sync.Map

m.Store("key", 42)

val, ok := m.Load("key")

m.Delete("key")

val, ok := m.LoadOrStore("key")
m.Range(func(k, v interface{}) bool
{
 fmt.Println("key", k, "val", v)
 return true
})

Map

• Profile files now contain symbol
information

• Means - no need to keep
binaries

• Super useful for profiling remote
servers or cross compiled apps

PProf

go tool pprof cpu.prof

• New feature in profile - custom labels

• Adds label to functions you profiling

Profile Labels

l := pprof.Labels("ext", "zip")
pprof.Do(ctx, l,
 func(ctx context.Context) {
 myFunc(ctx, args)
 }
)

• https://rakyll.org/profiler-labels/
• Example: pprofutil package,
• wrapper for http.Handler
• Adds "http-path" labels to each request

Profile Labels

import "github.com/rakyll/goutil/pprofutil"

http.Handle("/places",
pprofutil.LabelHandlerFunc(places)
)

https://rakyll.org/profiler-labels/
http://github.com/rakyll/goutil/pprofutil
http://github.com/rakyll/goutil/pprofutil

Profile Labels
(pprof) tagfocus="http-path"
(pprof) web

More stdlib changes

math/bits

• New package with bit manipulation functions

• Highly optimized for different CPU architectures

• Rotate bits

• Count zeroes / ones

• Reverse bits/bytes

• If you're asked on interview how to reverse bits,
use math/bits :)

• In testing package:

• (*T).Helper()

• (*B).Helper()

• Marks functions as helper,
so it's skipped when reports
file:line information in log.

Test helpers functions

Test helpers functions

httptest.Server.Client()

Go 1.9 is cool

• Upgrade now!

• Amazing artwork by @egonelbre and
Olga Shalakhina

https://twitter.com/egonelbre?lang=en
https://github.com/shalakhin/gophericons

Thank you

