
Analyze your data
and save the planet

@idanyliuk 
Golang Paris, 24 March '19



1. The Problem



The Problem

• Mobile app for analyzing and quiering some data


• Filter, search, different statistics


• Ability to upload new data for own analysis


• Unknown number of users (thousands, for sure)



The Problem

• Code for analysing data and parsing uploaded 
document has been written in Go and well tested 
over two years


• (That's where idea to make a mobile app started, 
actually)



2. The Solution



The Solution

• Client/server architecture


• Relational database


• REST HTTP/JSON APi


• N containers/VMs for horizontal scaling



Classic!



• It's a good approach if you have no idea what data are you working with


• But, if you inspect your data, often you can choose different trade-offs 



3. Analyzing data



The size

• In this case:


• Database was quite small – around half a GB


• Growing very slowly (50MB per year)



The access pattern

• In this case:


• Reads where often (hundreds or thousands per second in a peak times)


• Writes were extremely rare (once per week max, once per two months 
min)


• Assymetry!



Data cost profile

• In this case:


• It was okay to get delays in updating latest data



4. New solution!



Squeeze data

• Normalizing - remove every repetetive string


• Switching to more memory saving format - flatbuffers


• Bitpacking - i.e. if integer is in 0..16, you can pack 2 ints per byte



Reduced 500MB dataset to 
13(!) MB flatbuffers file



Good enough to ship it with 
mobile app itself!



New Solution

• Ship dataset with mobile app itself


• Use Gomobile to reuse existing code for parsing and analysing data


• Run all searches, queries & stats on the phone


• Update app in stores once per month, when the dataset is updated (week 
delay)



New Solution

• Use Flutter + Gomobile ultra combo


• Implement statistics and data analysis on the device


• NO SERVERS



New Solution

• Use Flutter + Gomobile ultra combo


• Implement statistics and data analysis on the device


• NO SERVERS (LITERALLY, ZERO)



Results



Results

• Massive decrease of amount of servers :)


• No need to deploy and scale servers


• No need to setup observability stack (nothing to observe)


• Saved money -$$$



Results

• Three orders of magnitude faster user experience (memory fetch vs 
network call)


• App works offline! :)


• Still Go, so most of the logic can be tested and benchmarked with 
awesome Go tooling



Results

• Zero energy consumption at data center :)



The best code is no code
github.com/kelseyhightower/nocode

https://github.com/kelseyhightower/nocode


The best distributed system is 
no distributed system



Thank you


