Analyze your data

and save the planet

@idanyliuk
Golang Paris, 24 March '19



1. The Problem



The Problem

* Mobile app for analyzing and quiering some data
e Filter, search, different statistics
* Ability to upload new data for own analysis

 Unknown number of users (thousands, for sure)



The Problem

* Code for analysing data and parsing uploaded
document has been written in Go and well tested
over two years

e (That's where idea to make a mobile app started,
actually)



2. The Solution



The Solution

e Client/server architecture
e Relational database

* REST HTTP/JSON API

* N containers/VMs for horizontal scaling



Classic!



e |t's a good approach if you have no idea what data are you working with

e But, If you inspect your data, often you can choose different trade-offs



3. Analyzing data



* |n this case:
 Database was quite small — around half a GB

 Growing very slowly (50MB per year)



The access pattern

* |n this case:
 Reads where often (hundreds or thousands per second in a peak times)

* Writes were extremely rare (once per week max, once per two months
min)

 Assymetry!



Data cost profile

e |In this case:

* |t was okay to get delays in updating latest data



4. New solution!



Squeeze data

 Normalizing - remove every repetetive string
e Switching to more memory saving format - flatbuffers

e Bitpacking - I.e. if integer is in 0..16, you can pack 2 ints per byte



Reduced 500MB dataset to
13(!) MB flatbuffers file



Good enough to ship it with
mobile app Iitself!



New Solution

Ship dataset with mobile app itself
Use Gomobile to reuse existing code for parsing and analysing data
Run all searches, queries & stats on the phone

Update app in stores once per month, when the dataset is updated (week
delay)



New Solution

e Use Flutter + Gomobile ultra combo

 Implement statistics and data analysis on the device

« NO SERVERS



New Solution

* Use Flutter + Gomobile ultra combo
 Implement statistics and data analysis on the device

« NO SERVERS (LITERALLY, ZERO)



Results




Results

Massive decrease of amount of servers :)
No need to deploy and scale servers
No need to setup observability stack (nothing to observe)

Saved money -$%$$



Results

* Three orders of magnitude faster user experience (memory fetch vs
network call)

 App works offline! :)

o Still Go, so most of the logic can be tested and benchmarked with
awesome Go tooling



Results

e Zero energy consumption at data center :)



The best code Is no code

github.com/kelseyhightower/nocode



https://github.com/kelseyhightower/nocode

The best distributed system Is
no distributed system



Thank you



